Introduction to Java Programming

Handout #7 Lecture 3 Exercises.doc

Lecture 3 Exercises – Writing Applications

Part 1 – Writing Command-Line Applications

Programming Tips

· The length of an array can be checked with its length property, i.e. arrayName.length
· Use the System.out.println(…) method to write to the console.

· Use the System.exit(…) method to exit the application. A parameter of zero means a normal exit, a parameter of one means an error was encountered.

· To convert a String into an integer use the Integer.parseInt() method

· String constants can be declared as: 

public static final String MY_STRING = “myStringValue”; 
· Use the new operator to create a new object, e.g. new Calculator(x, y).

· The Javadoc for the Java API can be found at: http://java.sun.com/j2se/1.4.1/docs/api/index.html 

Exercises

1. Set up a project environment as follows:

a. Create the directory c:\intro2java

b. Create sub-directories called bin, src and docs.

c. Configure the CLASSPATH (see Handout #6)

d. Configure the PATH, so you can run javac, etc

e. Put all source code in the src folder, and compile all classes into the bin folder.

2. Write a simple application that when run simply writes out “Hello World” to the console.

3. Write a simple application that loops through the array containing its command-line parameters, writing each of them to the console (Tip: check the javadoc for java.lang.String):

a. In upper case

b. and include the length of each string.

4. Write a simple command-line calculator as described by the UML diagram below. The calculator should be able to accept the following command line parameters:

a. The first number

b. An operator. One of the following strings: plus, minus, times, divide

c. A second number

The calculator should then print out the results of the calculation. If an incorrect number of arguments are provided, or the user types in an unknown operator, then the program should exit with an appropriate message.

[image: image1.png]
Part 2 – Working with Tools

1. Add javadoc comments to each of the classes and methods created above. Then use javadoc to generate HTML documentation for your package into the docs folder of your project.

2. Create a simple jar file containing the classes produced above.

3. Create a jar file containing the source code, documentation and classes.

4. Create a jar file identical to 2.2 above, but which includes a manifest file that instructs the JVM to automatically run the “Hello World” application created in above. See Handout #6 for instructions on how to do this.

L.Dodds, October 2002

1/2

